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Synopsis

We analyse the responses of deep convolutional image classification networks to systematic changes to their input images, learning not only about the nature of their adversarial vulnerability,
but also something more fundamental about their classification behaviour.
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Figure 1: Adding or subtracting components along d1 (a specific direction of perturbation in the input image space) causes the network to change
its prediction to ‘frog’: observe that a ‘deer’ with a mild diamond striping added to it gets classified as a ‘frog’. This trend is fairly consistent across
different choices of in itself, as can be visualised via the individual curves in the plots above where each curve is associated with a randomly sampled
in. Likewise, perturbations along d2 change any ‘frog’ to a ‘non-frog’ class: observe the predicted labels for the sample images along the red curve
in the second plot. Note that F̃frog(s|in,dj, θ) denotes the output of the layer before softmax for ‘frog’ class and s is the perturbation scaling factor.
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Figure 2: The framework developed in this paper can identify a family of pat-
terns that move predictions towards or away from any given class,
or have no effect on class identity at all, for any given network.

Key Results:

I These networks associate specific input image-space directions with fixed class identities, with little regard for context. This provides a novel perspective on Universal
Adversarial Perturbations [6], specifically why they empirically target particular classes.

I The adversarial vulnerability of DCNs is closely entwined with their performance capabilities: the input image-space directions along which the networks are most
vulnerable to attack are the same directions which they use to achieve their classification performance in the first place.

I Naive compression-based defence strategies remain vulnerable to appropriately designed attacks. The vulnerability is fundamental and can only be remedied through
development of a net with a substantially different concept of class identity than exists presently.

Analysis

We base our work on the geometric decision boundary analysis of [8], and begin by extracting the mean principal directions and principal curvatures of the classifier’s image-space class
decision boundaries over the dataset, as outlined below.
Algorithm 1 Computes mean principal directions and principal curvatures for a net’s image-space decision surface.

Input: network class score function F , dataset I = {i1, i2, · · · iN}, target class label c
Output: principal curvature basis matrix Vb and corresponding principal curvature vector vs

procedure PrincipalCurvatures(F , I, c)
H← null
for each sample in ∈ I s.t. argmaxk(Fk(in)) 6= c do

ĉ← argmaxk(Fk(in)) . network predicts in to be of class ĉ
Hcĉ: define as Hessian of function (Fc −Fĉ) 1 . subscripts select class scores
ĩn← DeepFool(in, c) . approximate nearest boundary point to in
H← H +Hcĉ(̃in) . accumulate Hessian at sample boundary point

H← H/‖I‖ . normalise mean Hessian by number of samples
(Vb,vs) = Eigs(H) . compute eigenvectors and eigenvalues of mean Hessian
return (Vb,vs)

1Note that the classes ĉ and c in the algorithm above correspond to the source and target classes of Fig.3 respectively.

Figure 3: This algorithm yields three different types of directions as shown below.

(a) Positive-curvature direction (b) Flat direction (c) Negative-curvature direction

Existing Hypothesis

I The authors of [8] advance a hypothesis connecting positively curved directions with the universal adversarial perturbations of [6] (see Fig.3(a)).

I They demonstrate that if the normal section of a net’s decision surface along a given direction can be locally bounded on the outside by a circular arc of a particular positive curvature
in the vicinity of a sample image point, then geometry accordingly dictates an upper bound on the distance between that point and the boundary in that direction.

I If such directions and bounds turn out to be largely common across sample image points (which they do), then the existence of universal adversaries follows directly, with higher
curvature implying lower-norm adversaries.

It is from this point that we move beyond the prior art and begin an iterative loop of further experimentation and analysis as follows.

Our Extended Hypothesis, Associated Experiments and Results

I - Class identity as a function of the component in specific image-space directions

Provided that the 2nd-order boundary approximation holds well over a sufficiently wide perturbation range and variety of images, the model implies that:

I The distance of such adversaries from the decision boundary should increase as a function of their norm.

I The attack along any positively curved direction should increasingly perturb the sample towards the corresponding target class: class c in Alg.1.

Our experimental observations confirm the above conjectures:
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Figure 4: Observe the selected class scores plotted as functions of the perturbation scaling factor s along the most positively curved direction per net. The ‘Median class score’ plot compares the score of a randomly selected target class with the supremum of the scores
for the non-target classes. Each curve represents the median of the class scores over the associated dataset and is bracketed below by the 30th-percentile score and above by the 70th. Notice that as the perturbation magnitude increases (with either sign),
the population’s target class score approaches and then surpasses the highest non-target class score. The ‘Transition into target class’ plot depicts the fraction of the dataset not originally of the target class, but which is transitioned into the target
class by the perturbation. Alongside, we graph that population’s median softmax target-class score. The black dashed line represents the fraction of the population originally of the target class that remains in the target class under the perturbation. Once again, notice
the monotonicity in the fraction of non-target samples perturbed into the target class, and in the median target class softmax score, as a function of the perturbation magnitude |s|. The image grid on the right illustrates the 2D
visualisations of the two most positively curved directions for randomly selected target classes: the columns correspond, from left to right, with the four net-dataset pairs under study.

While positively curved directions may be of primary interest in [8], two other important corollaries emerge from an extension of the above geometric
argument:

I The steps along negative-curvature directions perturb increasingly away from class c.

I The plethora of approximately zero-curvature (flat) directions identified in [2, 8] should have negligible effect on the class identity.

Once again, the experimental results confirm our hypothesis:

Figure 5: Observe the selected class scores plotted as functions of the scaling factor s of the perturbations along the most negatively curved directions and flat directions per net. The ‘Median class score’ plot compares the score of a randomly selected target
class with the supremum of the scores for the non-target classes, for the negatively curved directions. For the flat curvature directions, it plots the score of a randomly selected target class and non-target class respectively. Each curve represents the median of the
class scores over the associated dataset and is bracketed below by the 30th-percentile score and above by the 70th. For the negative-curvature directions, the ‘Transition out of target class’ graph works in reverse to the corresponding positive-curvature graph in
Fig.3: ‘sample proportion’ represents the fraction of the dataset originally of the target class which retains the target-class label under perturbation, with the median softmax target-class score as before. The black dashed line now represents the fraction of the
dataset not originally of the target class which remains outside of the target class under perturbation. Once again, notice that with an increasing perturbation norm the population’s non-target class scores overtake its target class
score, with the natural samples of the target class accordingly being perturbed out of it. Further, the flatness of the decision boundary manifests as flatness of both target and non-target class scores: over a wide
range of magnitudes, and these directions do not influence the network in any way. The images in the rightmost column illustrate a sample of these directions as visual patterns. Each block of eight images corresponds to the label (negative, or
flat) to its left, and the two-image columns in each block correspond from left to right with the main four net-dataset pairs under study.

II - Network classification performance versus effective data dimensionality

A more intuitive picture of what the networks are actually doing begins to emerge:

I The nets are identifying the high-curvature image-space directions as features associated with respective class identities.

I The mean decision boundary curvature along such a direction can then be thought of as representing the empirical average width of the feature
response window within which a class will be classified as the “inside class”, rather than the “outside class” of the curving boundary.

I Thus, these directions are what the net relies on generally in predicting the classes of images, with the curvatures-cum-sensitivities representing
their relative weightings.

I Accordingly, it should be possible to disregard the “flat” directions of near-zero curvature without any noticeable change in the nets’ predictions.

The results below confirm our intuition.
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Figure 6: Training and test accuracies of a sample of nets as a function of the subspace onto which their input images are projected. The input subspace is parametrised by a dimensionality parameter d, which controls the number of basis vectors selected per
class (d varies from 0 until the input space is fully spanned). We use four variants of selection: the d most positively curved directions per class (yielding the subspace Spos); the d most negatively curved directions per class (yielding the subspace Sneg); the union
of the previous two (subspace Sneg ∪ pos); and the d least curved (flattest) directions per class (subspace Sflat). The subspace S so obtained is represented by the orthonormalised basis matrix Qd (obtained by QR decomposition of the aggregated directions), and
each input image i is then projected onto S as id = QdQ

>
d i. Note: The mean training-set orthogonal component (I−QdQ

>
d )̄i can be added, but is approximately 0 in practice for data normalised by mean subtraction, as is the case here. Observe the relationship

between the ordering of curvature magnitudes and classification accuracy by comparing the Sflat curves to the others. The outcome is striking: it is evident that in many cases, classification decisions have effectively already been made
based on a relatively small number of features, corresponding to the most curved directions.

III - Link between classification and adversarial directions

Another important point emerges here:

I Since it is the high-curvature directions that are largely responsible for determining the nets’ classification decisions, the nets should be
vulnerable to adversarial attack along precisely these directions.

It was noted in [2] that adversarial attack vectors evince high components in subspaces spanned by high-curvature directions. We expand the analysis for various attack methods and
confirm the direct relationship between the fraction of adversarial norm in given subspaces and the corresponding usefulness of those subspaces for classification.
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Figure 7: Mean `2-norms of various adversarial perturbations (DeepFool [7], FGSM [4] and UAP [6]) and saliency maps [9] when projected onto the same subspaces as above, as a fraction of their original norms. Compare these plots with those in the figure
above. The inclusion of the saliency images of [9] alongside the attack methods makes explicit the fact that adversaries are themselves an exposure of the net’s notion of saliency.

By now, two results hint at a simpler way of identifying bases of classification/adversarial directions:

I The class-score curves sampled and displayed in Fig.1 reveal a direct connection between the curvature of a direction near the origin and its
derivative magnitude.

I The directions obtained by boundary curvature analysis in Alg.1 correspond to the directions exploited by various first-order methods, as in
Fig.7.

Thus, we use a collection of DeepFool perturbations to provide the required gradient information, perform SVD on them, and order the singular vectors by their singular values. As
hypothesised, the results neatly replicate the previously seen classification accuracy trends for high-to-low and low-to-high traversal of the singular vectors.
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Figure 8: Classification accuracies on image sets projected onto subspaces of the spans of their corresponding DeepFool perturbations. For each net-dataset pair, DeepFool perturbations are computed over the image set and assembled into a matrix that is
decomposed into its SVD. The singular vectors are ordered as per their singular values: Shi represents the high-to-low ordering, Slo the low-to-high, and d the number of vectors retained. Compare this figure to Fig.6 (while noticing how d now
counts the total number of directions). For the ImageNet experiments, owing to memory constraints, the SVD is performed on downsampled DeepFools of size 100× 100× 3 and 120× 120× 3, respectively. The resulting singular vectors span the entire
effective classification space of correspondingly downsampled images. This is evinced by the fact that the classification accuracy of images projected onto the singular vectors’ subspace saturates to the same performance as that yielded when the net is tested
directly on the downsampled images.

IV - On image compression and robustness to adversarial attack

Given the evidence that the effective directions of adversarial attack are also the directions that contribute the most to the DCNs’ classification
performance, we make the following conjectures:

I Any attempt to mitigate adversarial vulnerability by discarding these directions, either by compression of the input data [5, 1, 10] or by
suppression of intermediate network representations [3], must effect a loss in the classification accuracy.

I Nets must remain just as vulnerable to attack along the remaining classification directions, to the extent that the corresponding class-score
functions which possess the properties discussed earlier remain unchanged.

This is indeed the case, as demonstrated by the results below:

dlow En{`2 norm(in)} En{`2 norm(δin)} Accuracy (%) Fooling rate (%)
f = 1 f = 2 f = 3 f = 4 f = 5 f = 10

227 26798.72 63.96 57.75 100.00 100.00 100.00 100.00 100.00 100.00
200 26515.20 53.19 55.80 32.75 77.25 88.95 92.20 94.35 97.65
150 26327.03 46.86 53.50 35.55 58.35 77.90 85.95 89.25 95.65
120 26159.98 41.92 51.75 36.15 49.80 66.20 76.90 82.95 92.90
100 26008.02 37.98 48.10 41.65 49.25 59.95 68.05 74.80 88.30

Table 1: The images in used to train AlexNet operate at the scale of dorig = 227 (pixels on a side). In the pre-processing step, these images are downsized to dlow , before being upsampled back to the original scale. The reconstructed DeepFool perturbations δin
lose some of their effectiveness, as seen in the fooling-rate column for f = 1. When the effect of downsampling is countered by increasing the value of the `2-norms of these perturbations (using higher values of f), their efficacy is
steadily restored. Note that the mean norms of images and perturbations are estimated in the upscaled space, as are the classification accuracies. The accuracy values for dlow = {100, 120} should be compared to those at convergence in Fig.8. Any difference
in the performance scores is strictly due to the random selection of the subset of 2000 test images used for evaluation.
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Figure 9: Blue curves depict the mean `2-norms of ”confined DeepFool” perturbations: those that are calculated under strict confinement to the respective subspaces of Fig.8. Note the differences in scale of the y-axes of the different plots. Clearly,
lower-norm DeepFools can be obtained by restricting the attack’s iterative linear optimisation procedure to the space spanned by the “compressed perturbations”. For MNIST and CIFAR, we also plot (in red) the mean
norms of the projections of the input images onto those subspaces: observe the inverse relationship between the two curves. The columns on the right visualise, from top to bottom, sample images at the indicated points on the curves in the CIFAR100-AlexNet
plots, from left to right: blue-bordered images represent confined DeepFool perturbations (rescaled for display), with their red-bordered counterparts displaying the projection of the corresponding sample CIFAR image onto the same subspace. Observe that
when the human-recognisable object appearance is captured in any given subspace, the corresponding DeepFool perturbation becomes maximally effective (i.e. small-norm). Likewise, when the projected image is
not readily recognisable to a human, the DeepFool perturbation is large. The feature space per se does not account for adversariality: the issue is in the net’s response to the features.

Conclusion

I We expose a collection of directions along which the net’s class-score output functions are nonlinear, but are de facto of a relatively constrained form: axis-symmetric and
typically monotonic over large ranges, and strikingly similar across the different image samples.

I The way in which DCNs use these features to classify renders them structurally vulnerable to adversarial attack, as it implicitly differs from the way humans solve the same
problems.

I For any scheme to be truly effective against the problem of adversarial vulnerability, it must lead to a fundamentally more insightful (and likely complicated) use of features
than presently occurs. Until then, we hope that it is appreciated that as it stands, DCNs’ favourite features are their own worst adversaries.
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